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SUMMARY

Seasonal changes in disease activity have been
observed inmultiple sclerosis, an autoimmune disor-
der that affects the CNS. These epidemiological
observations suggest that environmental factors in-
fluence the disease course. Here, we report that
melatonin levels, whose production is modulated
by seasonal variations in night length, negatively
correlate with multiple sclerosis activity in humans.
Treatment with melatonin ameliorates disease in an
experimental model of multiple sclerosis and directly
interferes with the differentiation of human and
mouse T cells. Melatonin induces the expression of
the repressor transcription factor Nfil3, blocking the
differentiation of pathogenic Th17 cells and boosts
the generation of protective Tr1 cells via Erk1/2 and
the transactivation of the IL-10 promoter by ROR-a.
These results suggest that melatonin is another
example of how environmental-driven cues can
impact T cell differentiation and have implications
for autoimmune disorders such as multiple sclerosis.
INTRODUCTION

Multiple sclerosis (MS) is an immune-mediated disease of the

CNS that is thought to result from the destruction of myelin by

autoreactive T cells. CD4+ T cells characterized by the produc-

tion of IFN-g (Th1 cells) or IL-17 (Th17 cells) are considered

important contributors to MS immunopathogenesis (Miossec

et al., 2009; Sospedra and Martin, 2005; Steinman, 2014).

FoxP3+ regulatory T cells (Tregs) and IL-10-secreting type 1 reg-

ulatory T cells (Tr1) regulate the activity of effector T cells,

accordingly, deficits in Tregs and Tr1 cells have been described

in MS (Astier et al., 2006; Sakaguchi et al., 2010; Viglietta et al.,

2004). Thus, the balance between effector and regulatory
1338 Cell 162, 1338–1352, September 10, 2015 ª2015 Elsevier Inc.
T cells controls MS disease activity (Miossec et al., 2009; Sospe-

dra and Martin, 2005; Steinman, 2014).

Genetic polymorphisms have been associated with MS risk

and/or pathogenesis (Beecham et al., 2013; Sawcer et al.,

2011). However, environmental factors such as infections

(Ascherio et al., 2001; Correale and Farez, 2007; Correale

et al., 2006), sodium intake (Farez et al., 2014), smoking (Hernán

et al., 2005), and vitamin D levels (Ascherio et al., 2014) are also

known to affect MS development and course. Lower levels of

vitamin D, for example, are associated with higher relapse rates

(Runia et al., 2012; Simpson et al., 2010). As a result of the regu-

lation of its synthesis by sun exposure, a significant seasonal

fluctuation on vitamin D levels is observed in most locations,

with a peak in spring-summer and a nadir in autumn and winter

(Rosecrans and Dohnal, 2014). Thus, based on the reported anti-

inflammatory effects of vitamin D (Correale et al., 2009) (Ascherio

et al., 2010), MS relapse occurrence is predicted to peak during

autumn and winter. However, several studies, including a meta-

analysis (Jin et al., 2000) and a recent multicentric study (Spel-

man et al., 2014) found thatMS disease activity is higher in spring

and summer, suggesting that additional factors play a role in MS

relapse seasonality.

Here, we report that melatonin levels, which peak in autumn-

winter, show an inverse correlation with clinical disease activity

in MS patients. Moreover, melatonin limits the development of

experimental autoimmune encephalitis (EAE) and controls

Th17 and Tr1 cell differentiation. Thus, seasonal changes in

melatonin levels may contribute to the decreased disease activ-

ity observed in autumn and winter through a mechanism medi-

ated, at least partially, by the regulation of effector and regulatory

T cells.

RESULTS

Melatonin Levels Are Negatively Correlated with MS
Clinical Relapses
We first established the seasonality of MS relapses in our cohort

of 139 relapsing remitting MS patients (Table 1). Using a Poisson
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Table 1. Baseline and Clinical Characteristics of the Study

Population

All Participants (n = 139)

Age (years, mean ± SD) 38.6 ± 10.9

F:M (n) 87:52

Disease duration (years, median, range) 6 (1–20)

EDSS (median, range) 1 (0–4)

Treatment (n)

None 2

Interferon 64

Glatiramer acetate 34

Natalizumab 2

Fingolimod 26

Other 11

6-SM levels (ng/mg creatinine, mean ± SEM)

Summer 19.8 ± 1.5

Fall 21.8 ± 1.6

Winter 24.7 ± 0.6

Spring 19.2 ± 1.7

Vitamin D levels (ng/ml)

Summer 27.8 ± 0.8

Fall 25.2 ± 0.1

Winter 21.7 ± 3.2

Spring 21.7 ± 3.3
regressionmodel, we detected a 32% reduction in the number of

relapses occurring during fall and winter (incidence rate-ratio

[IRR] 0.682, 95% confidence interval [CI] 0.49–0.95, p = 0.02).

Hence, the MS patient cohort used in this study shows the sea-

sonality of MS relapses previously described for other cohorts

(Jin et al., 2000; Spelman et al., 2014).

Melatonin production is stimulated by darkness and follows a

seasonal pattern with higher levels during fall and winter (Brze-

zinski, 1997). Melatonin impacts several biological processes,

including the circadian clock and the immune response (Brze-

zinski, 1997). Thus, we investigated the relationship between

melatonin and MS disease activity by measuring 6-sulfatoxyme-

latonin (6-SM) levels in relapsing-remitting MS patients. Since

6-SM is the main melatonin metabolite, its levels in first morning

urine are strongly correlated with nighttime melatonin secretion,

supporting its use in epidemiological studies (Graham et al.,

1998; McMullan et al., 2013). In agreement with previous reports

(Morera and Abreu, 2007; Ueno-Towatari et al., 2007), we de-

tected increased melatonin secretion during fall and winter,

with lower levels during spring and summer (Figure 1A; Table

1). Moreover, we found a significant negative correlation be-

tween 6-SM levels and MS exacerbation rates (p < 0.01 Spear-

man’s correlation). This was further confirmed in an age and

gender-adjusted Poisson regression model, with a 3% reduc-

tion in the number of relapses for each 6-SM unit increase

(IRR 0.97, 95% CI 0.95–0.99, p = 0.007). Finally, to test whether

the relationship between melatonin levels and exacerbation rate
C

was synchronous, we lagged the occurrence of relapses for 1

(IRR 1.01, 95% CI 0.97–1.05; p = 0.7), 2 (IRR 1.03, 95% CI

0.99–1.07; p = 0.1), and 3 months (IRR 1.03, 95% CI 0.99–

1.07; p = 0.7), with no evidence of a lagged effect in relapse

occurrence.

We also assessed vitamin D levels and, as previously reported

for healthy controls andMS patients in our region (Correale et al.,

2009; Fassi et al., 2003), overall levels were low throughout the

year with higher levels during summer but no significant correla-

tion with MS relapses (Figure 1B). Finally, we did not detect a

correlation between MS relapses and additional environmental

factors such as reported upper respiratory tract infections and

UV incidence, as determined by national registries and NASA

satellites, respectively (Figures 1C and 1D). Thus, higher mela-

tonin levels during fall and winter are associated with a reduction

in clinical relapses.

Melatonin Ameliorates Experimental Autoimmune
Encephalitis
Based on our epidemiological findings, we studied the effects

of melatonin on CNS inflammation using the EAE model of

MS. Naive C57BL/6 wild-type mice were immunized with

MOG35-55 and treated daily with melatonin (5 mg/kg, intraperi-

toneally) or vehicle. Melatonin administration ameliorated EAE

clinical symptoms (Figures 2A and S1A; Table S1). The amelio-

ration of EAE was associated with a decreased number and fre-

quency of Th17 cells in spleen, lymph nodes, and CNS; this

decrease was also detected in IL-17+ IFNg+ and IL-17+ GM-

CSF+ CD4+ T cells that have been associated to the pathogen-

esis of EAE (Codarri et al., 2011; El-Behi et al., 2011; Lee et al.,

2012) (Figures 2C and 2D). We also detected a concomitant in-

crease in IL-10 secreting CD4+ T cells; no significant changes

were detected in the number or frequency of other T cell sub-

sets, B cells, gd T cells, or innate lymphoid cells (ILCs) (Figures

2B and S1B–S1D).

To further characterize the effects of melatonin on the enceph-

alitogenic T cell response, we analyzed the recall response to

MOG35–55. Splenocytes from melatonin-treated mice showed a

diminished proliferative response to MOG35–55, reduced IL-17

concomitant with increased IL-10 production, however, no sig-

nificant effects were detected on IFN-g production (Figures 2E

and 2F). Thus, melatonin arrests the encephalitogenic Th17

cell response.

To investigate if melatonin acts directly on T cells or whether it

controls the T cell response indirectly through its effects on anti-

gen presenting cells, we co-incubated sorted CD4+ T cells from

melatonin-treated or control mice with treatment-switched den-

dritic cells (DCs). When compared to controls isolated from

vehicle-treated mice, CD4+ T cells from melatonin-treated

mice co-incubated with splenic DCs isolated from control mice

showed decreased proliferation and IL-17 secretion, concomi-

tant with increased IL-10 production, (Figures 2G and 2H).

Conversely, we did not detect significant differences when we

used DCs isolated from melatonin or vehicle-treated mice to

activate CD4+ T cells from control-treated mice.

In support for a direct effect of melatonin on T cells, melatonin

suppressed the in vitro activation of naive 2D2+ transgenic T cells

with MOG35–55 and DCs (Figures 2I and S1E) or with antibodies
ell 162, 1338–1352, September 10, 2015 ª2015 Elsevier Inc. 1339
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Figure 1. Melatonin Levels Show an Inverse Correlation with MS Clinical Relapses

(A) Exacerbation rate for each season was estimated for the duration of the follow-up and depicted in the primary axis. 6-sulfatoxymelatonin levels measured in

first morning urine in each season is depicted as mean ± SEM in secondary axis. p value corresponds to Poisson regression model.

(B–D) Lack of correlation between exacerbation rate and vitamin D (B), reported respiratory infections (C), and UV radiation in Buenos Aires city (D).

See also Table 1.
to CD3 and CD28 in the absence of DCs (Figure 2J). Pretreat-

ment of DCs with melatonin did not affect their ability to activate

2D2+ T cells in the presence of MOG35–55 (Figure 2K). Melatonin

did not increase apoptosis in CD4+ T cells stimulated with anti-

bodies against CD3 and CD28, as indicated by the analysis of

annexin V and propidium iodide staining by flow cytometry or

the expression of Bcl-xl levels (Figures S1F and S1G). IL-10

blockade, however, abrogated the suppressive effects of mela-

tonin on T cell proliferation (Figure S1H).

Melatonin Affects Human T Cell Differentiation
We then studied the effects of melatonin on human CD4+ T cells.

In addition, we also analyzed the effects of agomelatine, which

activates melatonin-dependent signaling (Hickie and Rogers,

2011). Based on the effects of melatonin administration on

T cells during EAE, we focused our studies on human Th17

and Tr1 cells. Melatonin and agomelatine reduced the produc-

tion of IL-17, RORC, and IL17A expression by human CD4+

T cells activated under Th17 polarizing conditions (Figures 3A–

3C and S2), no effect was detected on the differentiation of hu-

man Th1 cells (Figures 3D–3F). Concomitantly, melatonin and
1340 Cell 162, 1338–1352, September 10, 2015 ª2015 Elsevier Inc.
agomelatine increased IL10 expression. Indeed, melatonin and

agomelatine also increased IL-10 production by human CD4+

T cells activated under Tr1 polarizing conditions (Figures 3G

and 3H).

To further investigate the role of melatonin on the immune

response in MS, we analyzed the correlation between serum

melatonin levels and IL17 and IL10 expression in peripheral

CD4+ T cells of 26 RRMS patients (Table S2). Using an age-

and gender-adjusted linear regression model, we detected a

negative correlation between melatonin in serum and IL17

expression in peripheral CD4+ T cells (p = 0.012): higher serum

melatonin levels were associated to lower IL17 expression (Table

S3). Conversely, linear regression analysis identified a positive

correlation between higher IL10 expression in peripheral CD4+

T cells and melatonin in serum (p = 0.003). We did not detect a

significant correlation between melatonin levels and the expres-

sion of RORC,NR1D1, or NFIL3 in CD4+ T cells (Table S3). Thus,

melatonin modulates the differentiation of human Th17 and Tr1

cells in vitro, and endogenous melatonin levels are associated

to the expression levels of IL17 and IL10 in peripheral CD4+

T cells in RRMS patients.
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(legend continued on next page)
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Melatonin Interferes with Th17 Generation
Together with Th1 cells, Th17 cells promote the development of

EAE and are thought to contribute to MS pathogenesis (Korn

et al., 2009). Based on the suppressive effects of melatonin on

EAE and IL-17 production by CD4+ T cells, we studied the effects

of melatonin on murine Th17 cell differentiation. Melatonin inter-

fered with the differentiation of Th17 cells in vitro as indicated by

the expression of rorc, IL-17, and the IL-23 receptor necessary

for the differentiation of Th17 cells into fully pathogenic cells;

no effects were detected on the differentiation of FoxP3+ iTregs,

Th1, or Th2 cells. (Figures 4A, 4B, and S3) (Lee et al., 2012).

Melatonin also increased the expression of IL-10, associated

to non-pathogenic Th17 cells (Lee et al., 2012; McGeachy

et al., 2007) (Figures 4A and 4B).

IFNg and IL-2 have been shown to limit Th17 cell differentiation

(Korn et al., 2009). However, in our studies Th17 cells were differ-

entiated in the presence of IFNg-blocking antibodies, and IL-2

blocking antibodies failed to abrogate the suppression of Th17

differentiation by melatonin (Figure S4A and S4B). Thus, mela-

tonin suppresses Th17 cell differentiation through a mechanism

independent of IFNg or IL-2.

Physiological concentrations of melatonin result in the activa-

tion of signaling pathways controlled by membrane and nuclear

receptors (Brzezinski, 1997). The melatonin membrane receptor

MTNR1A is expressed by a variety of tissues including cells of

the immune system (Jockers et al., 2008; Pozo et al., 1997). In

addition, melatonin binds to the nuclear retinoid-related orphan

receptor alpha (ROR-a), which is also expressed by immune

cells (Pozo et al., 2004) and plays a role in Th17 development

(Yang et al., 2008). We detected the expression of both

MTNR1A and ROR-a on Th17 cells (Figures S4C and S4D).

To study the role of MTNR1A signaling on the effects of mela-

tonin on Th17 cells, we used the MTNR1A-specific agonists

agomelatine and ramelteon (Karim et al., 2006) (Figure S4E).

Similar to our observations with melatonin, MTNR1A activation

by agomelatine or ramelteon suppressed the differentiation of

Th17 cells (Figures 4C, 4D, S4F, and S4G). Conversely, mela-

tonin failed to suppress the differentiation of MTNR1A-deficient

(MTNR1A KO) Th17 cells (Figures 4E and 4F). Thus, MTNR1A

mediates the suppressive effects of melatonin on Th17 cell

differentiation.
(B) Flow cytometry analysis of IL-17+, IL10+, IFN-g+, and FoxP3+ CD4+ cells from t

At least four mice were analyzed per group and data are presented as mean ± S

(C and D) Flow cytometry analysis of IL-17+, IFN-g+, IL-17+-IFN-g+ (DP), and IL-17

the clinical peak of EAE. *p < 0.05 of unpaired t test.

(E) Proliferative responses of CD4+ T cells to MOG35–55 of vehicle- or melatonin-tre

as mean ± SEM. *p < 0.05 of one-way ANOVA.

(F) Cytokine secretion by proliferating CD4+ T cells from vehicle and melatonin-tr

SEM). *p < 0.05 of unpaired t test.

(G and H) Proliferative responses (G) and cytokine profile (H) of CD4+ T cells in co

Data are representative of three independent experiments (means and SEM). *p

(I) Proliferative responses of melatonin-treated 2D2 CD4+ T cells to MOG35–55 in

experiments (means and SEM). *p < 0.05 of one-way ANOVA.

(J) Proliferative responses of melatonin-treated 2D2 CD4+ T cells to MOG35–55 s

independent experiments (means and SEM). *p < 0.05 of one-way ANOVA.

(K) Proliferative responses of treated 2D2 CD4+ T cells to MOG35–55 stimulatedme

(means and SEM).

See also Figure S1 and Table S2.
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Melatonin Suppresses Th17 Cell Differentiation via
Erk1/2 and C/EBPa Activation
REV-ERBa (encoded by nr1d1) is a component of the circadian

clock that promotes Th17 differentiation by limiting the expres-

sion of NFIL3, a direct inhibitor of rorc transcription (Yu et al.,

2013). Melatonin regulates the activity of both circadian and sea-

sonal clocks (Pévet, 2003). Indeed, melatonin levels show a

circadian inverse correlation with nr1d1 expression, suggesting

that melatonin affects REV-ERBa expression (Kojetin and Burris,

2014). Thus, we investigated whether melatonin acts on REV-

ERBa to suppress Th17 cell differentiation.

Using reverse protein arrays (Farez et al., 2009) we analyzed

signaling pathways triggered by melatonin in T cells and de-

tected an MTNR1A-dependent increase in the activation of

Erk1/2 (Figures 4G, 4H, S4H, and S4I). Of note, Erk1/2 inhibition

has been previously shown to enhance Th17 cell differentiation

(Tan and Lam, 2010) and Erk1/2 phosphorylation has been linked

to the reduced expression of REV-ERB proteins (Castellano

et al., 2014; Kojetin and Burris, 2014), but the mechanism

involved and its relevance for T cells has not been characterized

yet. Through a bioinformatic analysis of the nr1d1 promoter, we

identified a binding site for the CAAT/enhancer-binding protein a

(C/EBPa), a leucine zipper transcription factor involved in the

regulation of cellular differentiation (Lekstrom-Himes and Xan-

thopoulos, 1998). C/EBPa is a downstream target of Erk1/2 acti-

vated by phosphorylation (Johnson, 2005). Thus, we analyzed

whether Erk1/2 regulates the transcriptional activity of the

nr1d1 promoter in a C/EBPa-dependent manner.

Th17 cell differentiation in the presence of melatonin led to

C/EBPa phosphorylation and the recruitment of C/EBPa to the

nr1d1 promoter (Figures 4I and 4J). C/EBPa phosphorylation

and recruitment to the nr1d1 promoter were suppressed in

MTNR1A KO T cells and in the presence of the Erk1/2 inhibitor

UO216 (Figures 4I and 4J). Hence, melatonin triggers the recruit-

ment of C/EBPa to the nr1d1 promoter in anMTNR1A- and Erk1/

2-dependent manner.

To analyze the effects of C/EBPa on the transcriptional activity

of the nr1d1 promoter, we used a reporter construct in which the

nr1d1 promoter controls luciferase expression. Treatment of

nr1d1 reporter-transfected HEK293 cells with melatonin or ago-

melatine resulted in decreased luciferase activity and similar
he spleen of vehicle- or melatonin-treatedmice at day 7 after disease induction.

EM. *p < 0.05 of unpaired t test.
+-GM-CSF+ CD4+ T cells from the CNS of control- or melatonin-treated mice at

atedmice. At least threemice were analyzed per group and data are presented

eated. Data are representative of three independent experiments (means and

-culture with dendritic cells derived from melatonin-treated or untreated mice.

< 0.05 of one-way ANOVA.

the presence of dendritic cells. Data are representative of three independent

timulated only with anti-CD3 and anti-CD28. Data are representative of three

latonin-treated DCs. Data are representative of three independent experiments
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Figure 3. Melatonin Interferes with Human Th17 Cell Differentiation and Boosts Tr1 Generation

(A) Flow cytometry analysis of IL-17 expression in human Th17-differentiated CD4+ T cells (IL-1b, IL-6, and TGF-b1) in the presence or absence of melatonin

(500 ng/ml) and agomelatine (500 ng/ml). Data are representative of three independent experiments (means and SEM). *p < 0.05 of one-way ANOVA.

(B) Cytokine quantification by ELISA of IL-17 in human Th17-differentiated CD4+ T cells in the presence or absence of melatonin (500 ng/ml) and agomelatine

(500 ng/ml). Data are representative of three independent experiments (means and SEM). *p < 0.05 of one-way ANOVA.

(C) RT-PCR analysis of Th17 cells cultured as in (A). Data are representative of three independent experiments (means and SEM) *p < 0.05 of one-way ANOVA.

(D) Flow cytometry analysis of IFN-g expression in human Th1-differentiated CD4+ T cells (IL-12) in the presence or absence of melatonin (500 ng/ml) and

agomelatine (500 ng/ml). Data are representative of three independent experiments (means and SEM).

(E) Cytokine quantification by ELISA of IFN-g in human Th1-differentiated CD4+ T cells in the presence or absence of melatonin (500 ng/ml) and agomelatin

(500 ng/ml). Data are representative of three independent experiments (means and SEM). *p < 0.05 of one-way ANOVA.

(F) RT-PCR analysis of Th1 cells cultured as in (D). Data are representative of three independent experiments (means and SEM). *p < 0.05 of one-way ANOVA.

(G) Flow cytometry analysis of IL-10 expression in human Tr1-differentiated CD4+ T cell in the presence or absence of melatonin (500 ng/ml)and agomelatin

(500 ng/ml). Data are representative of three independent experiments (means and SEM). *p < 0.05 of one-way ANOVA.

(H) RT-PCR analysis of Tr1 cells cultured as in (F). Data are representative of three independent experiments (means and SEM). *p < 0.05 of one-way ANOVA.

See also Figure S2.
effects were achieved by C/EBPa overexpression (Figure 4K).

Finally, to investigate the role of C/EBPa on the suppression of

Th17 cell differentiation by melatonin we used C/EBPa-deficient

T cells (Yang et al., 2005). C/EBPa-deficiency abrogated the

decrease in nr1d1 expression and the suppression of Th17 dif-

ferentiation induced by melatonin (Figures 4L and 4M). Thus,

melatonin suppresses the differentiation of Th17 cells through

a mechanism mediated by MTNR1A, Erk1/2, and C/EBPa.

Melatonin Inhibits ROR-gt and ROR-a Expression in
Th17 Cells by Inducing Nfil3
NFIL3 limits Th17 cell differentiation by suppressing the expres-

sion of ROR-gt (Yu et al., 2013). REV-ERBa inhibits nfil3 expres-
C

sion (Yu et al., 2013). Thus, we hypothesized that the decrease in

nr1d1 expression induced by melatonin results in the NFIL3-

dependent inhibition of rorc expression (Figure 5A). We detected

nr1d1 expression in Th17 cells, but not in Th0 or Tr1 cells (Fig-

ure 5B). Melatonin suppressed nr1d1 expression during Th17

cell differentiation, resulting in a concomitant increase in the

expression of the ROR-gt repressor NFIL3 (Figures 5C and

5D). In agreement with our results on Th17 cell differentiation,

the regulation of REV-ERBa and NFIL3 expression by melatonin

was mediated by its membrane receptor MTNR1A and Erk1/2

(Figures 5C–5G). The relevance of the regulation of REV-ERBa

expression for the modulation of Th17 cell differentiation by

melatonin was confirmed in nr1d1 overexpression experiments
ell 162, 1338–1352, September 10, 2015 ª2015 Elsevier Inc. 1343
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and by the use of REV-ERBa-deficient T cells. Nr1d1 overex-

pression and REV-ERBa deficiency abrogated the effects of

melatonin on Th17 cell differentiation (Figures 5H–5K). Hence,

MTNR1A-dependent signaling triggered by melatonin sup-

presses Th17 cell differentiation through the regulation of REV-

ERBa expression.

ROR-a promotes Th17 cell differentiation (Yang et al., 2008).

Accordingly, ROR-a activation by the specific agonist CGP

52608 boosted Th17 cell differentiation (Figures 4C and 4D).

ROR-a is directly activated by melatonin (Brzezinski, 1997).

Indeed, melatonin boosted the differentiation of MTNR1A-defi-

cient Th17 cells (Figure 4E), suggesting that melatonin-triggered

MTNR1A signaling interferes with the promotion of Th17 cell dif-

ferentiation by ROR-a. Based on the inhibitory effects of NFIL3

on ROR-gt expression and Th17 cell differentiation (Yu et al.,

2013), we studiedwhether NFIL3 also inhibits ROR-a expression.

A bioinformatics analysis identified NFIL3 binding sites in the

rora and rorc promoters. Accordingly, we detected the recruit-

ment of NFIL3 to the rora and rorc promoters in CD4+ T cells acti-

vated under Th17 polarizing conditions in the presence of mela-

tonin, concomitant with a reduced expression of both ROR-a

and ROR-gt (Figures 5L and 5M). We then investigated the rele-

vance of the regulation of NFIL3 expression for the modulation of

Th17 cell differentiation. Overexpression of NFIL3 (Figures 5N

and 5O) and NFIL3-deficiency (Figures 5P and 5Q) abrogated

the suppressive effects of melatonin on Th17 cell differentiation.

Thus, the regulation of NFIL3 expression by melatonin mediates

its inhibitory effects on the differentiation of Th17 cells in vitro. To

evaluate the role of MTNR1A and NFIL3 on the suppression of

Th17 cell differentiation by melatonin in vivo, we used RAG-1-

deficient mice reconstituted with wild-type, MTNR1A-, REV-

ERBa-, or NFIL3-deficient CD4+ T cells and immunized with

MOG35–55 in CFA. In agreement with our in vitro observations,

the suppression of Th17 cell differentiation by melatonin in vivo

was abrogated byMTNR1A-, REV-ERBa-, and NFIL3-deficiency
Figure 4. Melatonin Interferes with Th17 Cell Differentiation via the Erk

(A) CD4+ naive T cells were differentiated into Th17 cells by the addition of TFG-b

and analyzed by RT-PCR after 72 hr. Displayed image is representative of five e

(B) Cytokine secretion analysis of IL-17 and IL-10 after 72 hr of culture as in (A).

*p < 0.05 of unpaired t test.

(C) Cytokine secretion in Th17-differentiated CD4+ T cells in the presence or abse

52608 (20 ng/ml, ROR-a ligand). Data are representative of three independent e

(D) RT-PCR analysis of Th17 cells cultured as in (C). Data are representative of th

(E) Flow cytometry analysis of IL-17 expression as in (A), in wild-typemice andMTN

(means and SEM). *p < 0.05 of unpaired t test.

(F) RT-PCR analysis of wild-type and MTNR1A-deficient mice cultured as in (E).

*p < 0.05 of unpaired t test.

(G) Signal transduction profiling using reverse protein arrays. Data are representa

t test.

(H) Immunoblot analysis of T-Erk1/2 and P-Erk1/2. Data are representative of tw

(I) Immunoblot analysis of T-C/EBPa and P-C/EBPa Data are representative of t

(J) Putative binding sites of C/EBPa in nr1d1 (left); chromatin immunoprecipitati

periments (means and SEM) *p < 0.05 of one-way ANOVA.

(K) Luciferase activity of HEK293 cells transfected with a luciferase reporter co

experiments (means and SEM). *p < 0.05 of unpaired t test.

(L) Flow cytometry analysis of IL-17 expression as in (A) in wild-type mice and C/

(means and SEM). *p < 0.05 of one-way ANOVA.

(M) Flow cytometry analysis of IL-17 expression as in (A), in wild-typemice andC/E

(means and SEM). *p < 0.05 of unpaired t test.

See also Figures S3 and S4.

C

(Figures 5R and S5). Indeed, we detected increased Th17 cell

differentiation in response to treatment of mice reconstituted

with MTNR1A-, REV-ERBa-, or NFIL3-deficient T cells, most

likely reflecting the unopposed agonistic activity of melatonin

on ROR-a and its promoting effects on the differentiation of

Th17 cells. Taken together, these data suggest that melatonin

interferes with Th17 cell differentiation via the inhibition of

ROR-gt and ROR-a expression through an NFIL3-dependent

mechanism.

Melatonin Boosts Tr1 Cell Differentiation via Erk1/2
and ROR-a
CD4+ IL-10-producing Tr1 cells play an important role in the

regulation of the immune response (Pot et al., 2011; Roncarolo

et al., 2006). The amelioration of EAE bymelatonin administration

was associated with an increase in IL-10-producing T cells (Fig-

ure 2). Thus, we investigated the effects of melatonin on the acti-

vation of naive CD4+ T cells under Tr1 polarizing conditions. We

found that melatonin boosted the expression of IL-10 and the

Tr1-associated molecules il21, ahr, and cmaf (Apetoh et al.,

2010) (Figure 6A). In addition, melatonin boosted the suppres-

sive activity of Tr1 cells in vitro (Figure 6B).

We then investigated the mechanisms underlying the effects

of melatonin on Tr1 regulatory cells. We detected the expression

of both MTNR1A and ROR-a by Tr1 cells (Figures S4C and S4D).

Indeed, both agomelatine and CGP 52608, specific agonist for

MTNR1A and ROR-a, respectively, boosted Tr1 cell differentia-

tion (Figures 6C and 6D). In agreement with these results,

MTNR1A deficiency or inhibition of MTNR1A-activated Erk1/2

by UO126 interfered with the boost in Tr1 differentiation bymela-

tonin (Figures 6E and 6F). Of note, Erk1/2 activation is reported to

promote cmaf-dependent IL-10 production by CD4+ T cells (Sar-

aiva et al., 2009). In addition, ROR-a deficiency suppressed the

differentiation of Tr1 cells induced by IL-27 and its boost by

melatonin (Figure 6G).
1/2-C/EBPa Pathway

, IL-6 (0 hr), and IL-23 (48 hr) in the presence or absence of melatonin (2 ng/ml)

xperiments. *p < 0.05 of unpaired t test.

Data are representative of three independent experiments (means and SEM).

nce of melatonin (2 ng/ml), agomelatine (20 ng/ml, MTNR1A ligand), and CGP

xperiments (means and SEM). *p < 0.05 of one-way ANOVA.

ree independent experiments (means and SEM). *p < 0.05 of one-way ANOVA.

R1A-deficient mice. Data are representative of three independent experiments

Data are representative of three independent experiments (means and SEM).

tive of two independent experiments (means and SEM). *p < 0.05 of unpaired

o independent experiments (means and SEM).

wo independent experiments (means and SEM).

on with anti-C/EBPa (right). Data are representative of three independent ex-

nstruct for the nr1d1 promoter. Data are representative of three independent

EBPa-deficient mice. Data are representative of two independent experiments

BPa-deficient mice. Data are representative of three independent experiments
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ROR-a exerts its biological effects by binding to ROR

response elements (ROREs) in target genes (Jetten, 2009). A bio-

informatic analysis identified ROR-a binding sites in the il10 pro-

moter (Figure 6H), suggesting that melatonin may increase the

recruitment of ROR-a to the il10 promoter and consequently,

il10 transcription. In agreement with this hypothesis, we de-

tected increased binding of ROR-a to the il10 promoter following

T cell activation under Tr1 polarizing conditions in the presence

of melatonin (Figure 6H). Moreover, ROR-a transactivated the

il10 promoter in reporter assays and synergized with the aryl hy-

drocarbon receptor (AhR) and c-Maf to boost their ability to pro-

mote il10 expression (Apetoh et al., 2010; Gandhi et al., 2010)

(Figure 6I). Taken together, these data suggest that melatonin

boosts Tr1 cell differentiation through its effects on MTNR1A

and ROR-a (Figure 6J).

DISCUSSION

Strong epidemiological evidence supports the role of vitamin D

in reducing MS relapses (Ascherio et al., 2012). Strikingly,

vitamin D levels are higher during spring and summer, when

relapse occurrence in MS patients peaks. Thus, the observation

of a lower occurrence of relapses in seasons characterized by

lower vitamin D levels represents a ‘‘seasonal paradox’’: re-

lapses should be less frequent in spring and summer when

vitamin D levels are higher, yet the opposite is found in most

studies (Jin et al., 2000; Spelman et al., 2014), with a few excep-

tions (Løken-Amsrud et al., 2012). Our data may solve this

paradox by identifying melatonin, whose levels are regulated
Figure 5. Melatonin Interferes with Th17 Cell Differentiation by Limitin

(A) Schematic diagram of the proposed mechanisms mediating the effects of me

(B) RT-PCR analysis of nr1d1 expression in CD4+ T cells activated under Th0, T

independent experiments (means and SEM). *p < 0.05 of unpaired t test.

(C) RT-PCR analysis of nr1d1 (left) and nfil3 (right) expression in CD4+ T cells activ

(2 ng/ml), or agomelatine (20 ng/ml). Data are representative of three independen

was further confirmed by western blot.

(D) Immunoblot analysis of Nfil3. Data are representative of two independent exp

(E) RT-PCR analysis of nfil3 expression in CD4+ T cells activated under Th17 polar

Data are representative of five independent experiments (means and SEM). *p <

(F and G) Flow cytometry analysis of IL-17 expression (F) and rorc expression (G

melatonin (2 ng/ml) and/or UO126. Data are representative of three independent

(H and I) Flow cytometry analysis of IL-17 expression (H) and rorc and il17 express

of melatonin (2 ng/ml), following infecting with a control or an nr1d1-encoding ret

SEM). *p < 0.05 of one-way ANOVA.

(J and K) Flow cytometry analysis of IL-17 expression (J) and rorc and il17 express

polarizing conditions in the presence of melatonin (2 ng/ml). Data are representat

ANOVA.

(L) Putative binding sites of Nfil3 in rorc and rora (left). ChIP analysis of the interact

polarizing conditions (right). Data are representative of three independent experi

(M) RT-PCR analysis of rorc and rora expression in CD4+ T cells activated unde

representative of three independent experiments (means and SEM). *p < 0.05 of

(N and O) Flow cytometry analysis of IL-17 expression (N) and rorc and il17 exp

presence of melatonin (2 ng/ml) and transduced with a control or nfil3-encoding re

SEM). *p < 0.05 of one-way ANOVA.

(P and Q) Flow cytometry analysis of IL-17 expression (P) and rorc and il17 expre

Th17 polarizing conditions in the presence of melatonin (2 ng/ml). Data are repres

way ANOVA.

(R) Flow cytometry analysis of IL-17 and IFN-g expression in CD4+ T cells from

NFIL3-deficient CD4+ T cells, immunized with MOG35–55 in CFA and treated with

See also Figure S5.
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by seasonal fluctuations in day length, as an additional regulator

of the immune response in MS. Note that night shift work, which

is associated with lower overall melatonin levels (Schernhammer

et al., 2004), increases the risk of developing MS (Hedström

et al., 2011). These findings suggest that melatonin may also

be an MS risk factor; the relationship between melatonin levels

and the risk of developing MS is the focus of ongoing investiga-

tions. Finally, the interplay between melatonin and other sea-

sonal environmental factors known to impactMS such as vitamin

D in different geographic locations remains to be further

elucidated.

The rise in the past 50 years in the incidence of autoimmune

disorders has reached an epidemic proportion and cannot be

accounted by genetic risk only. Thus, increasing attention is

being paid to environmental factors and their impact in the

immune response and T cell differentiation in particular. For

example: several compounds present in household products

can activate the aryl hydrocarbon receptor and impact both

Th17 and regulatory cell differentiation (Quintana et al., 2008);

sodium in westernized diet and processed foods can also

enhance Th17 cell differentiation (Wu et al., 2013); the compo-

sition of commensal microbiota impacts T cell differentiation

and response (Lathrop et al., 2011); and the lack of sun expo-

sure and dietary habits can diminish vitamin D levels and affect

regulatory cell function (Correale et al., 2009). Each of these

environmental factors trigger different signaling pathways and

the characterization of the complex interaction between them

can shed light on the impact of the environment on the immune

system.
g NFIL3 Expression

latonin on Th17 cell differentiation.

h17, and Tr1 polarizing conditions for 3 days. Data are representative of three

ated under Th17 polarizing conditions for 3 days treated with vehicle, melatonin

t experiments (means and SEM). *p < 0.05 of unpaired t test. NFIL3 expression

eriments (means and SEM).

izing conditions for 3 days in the presence of melatonin (2 ng/ml) and/or UO126.

0.05 of one-way ANOVA.

) in CD4+ T cells activated under Th17 polarizing conditions in the presence of

experiments (means and SEM). *p < 0.05 of one-way ANOVA.

ion (I) in CD4+ T cells activated under Th17 polarizing conditions in the presence

rovirus. Data are representative of three independent experiments (means and

ion (K) in wild-type and REV-ERBa-deficient CD4+ T cells activated under Th17

ive of three independent experiments (means and SEM). *p < 0.05 of one-way

ion of NFIL3 with its putative binding sites in CD4+ T cells activated under Th17

ments (means and SEM). *p < 0.05 of one-way ANOVA.

r Th17 polarizing conditions in the presence of melatonin (2 ng/ml). Data are

unpaired t test.

ression (O) in CD4+ T cells activated under Th17 polarizing conditions in the

trovirus. Data are representative of three independent experiments (means and

ssion (Q) in wild-type mice and NFIL3-deficient in CD4+ T cells activated under

entative of three independent experiments (means and SEM). *p < 0.05 of one-

RAG-1-deficient mice reconstituted with wild-type, MTNR1A- REV-ERBa, or

vehicle or melatonin (5 mg/kg). *p < 0.05 of unpaired t test.
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Pro-inflammatory Th17 cells are thought to contribute to the

pathogenesis of EAE andMS (Miossec et al., 2009). Th17 cell dif-

ferentiation is regulated by ROR-a andROR-gt and therapies tar-

geting Th17 cells are currently being tested in MS and other

autoimmune diseases with preliminary encouraging results

(Baeten and Kuchroo, 2013). Melatonin, despite having the po-

tential to activate ROR-a, suppresses the generation of Th17

cells via its membrane receptor in a NFIL3-dependent fashion.

Interestingly, it has been recently shown that the circadian clock

suppresses Th17 development during nighttime through a

similar NFIL3-dependent mechanism (Yu et al., 2013). Our

work suggests that, in addition to Th17 cells, Tr1 cells are also

regulated by melatonin during nighttime in an Erk1/2- and

ROR-a-dependent manner. Based on the high evolutionary con-

servation of melatonin production by the pineal gland and its

regulation by daylight (Macchi and Bruce, 2004), it is likely that

the circadian and seasonal effects of melatonin on the immune

response play an important role that resulted in its positive selec-

tion during evolution.

Tr1 cells are characterized by the production of IL-10 (Pot

et al., 2011; Roncarolo et al., 2006). AhR, c-Maf, and Erk1/2

have been shown to regulate Tr1 cell development and IL-10

expression (Apetoh et al., 2010; Gandhi et al., 2010). Our work

shows that melatonin promotes Tr1 cell differentiation by acti-

vating Erk1/2 signaling, which has been previously described

to control IL-10 expression in T cells and DCs (Saraiva and

O’Garra, 2010). We also identified ROR-a as a mediator of the

effects of melatonin in Tr1 cells. Thus, these data suggest

that melatonin utilizes multiple pathways to boost Tr1 cell

differentiation.

The interplay between pro-inflammatory and regulatory cells

controls the development of autoimmune diseases such as

MS. Here, we report that melatonin, whose levels show seasonal

variability, control the balance between pathogenic and regula-

tory T cells. However, in MS patients, melatonin is likely to act

on several cell types to affect disease activity. Indeed, NFIL3

has been shown to play a role in human inflammatory bowel dis-

ease and autoimmune colitis through its activity on innate im-

mune cells (Kobayashi et al., 2014). Thus, future studies should
Figure 6. Melatonin Boosts Tr1 Cell Differentiation

(A) RT-PCR analysis of il10, ahr, and maf expression in Tr1-differentiated CD4+ T c

of three independent experiments (means and SEM). *p < 0.05 of one-way ANO

(B) In vitro suppression assay, treated or untreated differentiated Tr1 cells as in a, w

proliferation cycles (CSFE dilution) were measured after 48 hr by flow cytometry

*p < 0.05 of one-way ANOVA.

(C) Flow cytometry analysis of IL-10 expression in Tr1-differentiated CD4+ T ce

MTNR1A ligand), and CGP 52608 (20 ng/ml, ROR-a ligand). Data are representat

ANOVA.

(D) RT-PCR analysis of Tr1 cells cultured as in (C). Data are representative of thr

(E) RT-PCR analysis of il10 expression as in (C), in wild-typemice andMTNR1A-de

and SEM). *p < 0.05 of one-way ANOVA.

(F) RT-PCR expression of il10 in melatonin-treated Tr1 cells with or without the

(means and SEM). *p < 0.05 of unpaired t test versus vehicle and signaling inhib

(G) Flow cytometry analysis of IL-10 expression as in (C), in wild-type mice and R

(H) ROR-a putative binding site present in the il10 promoter (lower panel) and c

sentative of three independent experiments (means and SEM). *p < 0.05 of unpa

(I) Luciferase activity of HEK293 cells transfected with a luciferase reporter con

periments (means and SEM). *p < 0.05 of unpaired t test.

(J) Schematic diagram depicting the effects of melatonin in Tr1 cells.

C

investigate the effects of melatonin on innate immune cells in

MS patients and also its role in inflammatory bowel disease

and other immune-mediated disorders. Finally, although our

data identify melatonin-dependent signaling as a potential target

for therapeutic immunomodulation, the pathways involved are

complex and likely cross-regulated. Thus, extreme caution

should be exercised to evaluate the translational potential of

these findings.

EXPERIMENTAL PROCEDURES

Patients

Consecutive patients with relapsing-remitting MS according to McDonald

criteria (Polman et al., 2011) were recruited from the MS clinic at the Raúl Car-

rea Institute for Neurological Research (FLENI) between September of 2011

and November of 2012. Study protocol was approved by the Institutional

Ethics Committee, and all subjects signed an informed consent form. See Sup-

plemental Experimental Procedures for detailed information.

Animals and EAE

EAE was induced as follows: mice were immunized with 100 mg MOG35–55

and 500 mg mycobacterium tuberculosis extract H37Ra (Difco). Mice were

also injected intraperitoneally with 200 ng pertussis toxin on days 0 and 2.

Melatonin (5 mg/kg) or vehicle (0.01% DMSO) was administered daily at

7:00 p.m.

Flow Cytometry Staining and Acquisition

For intracellular cytokine staining, cells were stimulated for 4 hr at 37�C with

phorbol 12-myristate 13-acetate (50 ng/ml; Sigma), ionomycin (1 mg/ml;

Sigma), and monensin (GolgiStop; 1 mg/ml; BD Biosciences). After being

stained for surface markers, cells were fixed and made permeable according

to the manufacturer’s instructions (BD Biosciences). All antibodies against cy-

tokines were from Biolegend. All experiments were started at the same time

(8:00–9:00 a.m.). Data were collected with a LSR II or FACSAria (BD Biosci-

ences), then were analyzed with FlowJo software (Treestar).

Measurement of Cytokines

Secreted cytokines were measured in tissue culture supernatants after

72–96 hr by ELISA as previously described (Farez et al., 2009).

qRT-PCR

RNA was extracted with RNAeasy columns (QIAGEN), then cDNA was pre-

pared according to the manufacturer’s instructions (Applied Biosystems)
ells in the presence or absence of melatonin (2 ng/ml). Data are representative

VA.

ere co-cultured after 72 hr with CD4+ T cells previously labeled with CSFE, and

. Data are representative of two independent experiments (means and SEM).

lls in the presence or absence of melatonin (2 ng/ml), agomelatine (20 ng/ml,

ive of three independent experiments (means and SEM). *p < 0.05 of one-way

ee independent experiments (means and SEM). *p < 0.05 of one-way ANOVA.

ficient mice. Data are representative of three independent experiments (means

addition of UO126. Data are representative of five independent experiments

itor control condition. **p < 0.05 versus vehicle of UO126-treated condition.

OR-a-deficient mice.

hromatin immunoprecipitation with anti-ROR-a (upper panel). Data are repre-

ired t test.

struct for the il10 promoter. Data are representative of three independent ex-
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and was used as template for real-time PCR. All primers and probes were pro-

vided by Applied Biosystems andwere used on the ViiA 7 Real-Time PCR Sys-

tem (Applied Biosystems). Expression was normalized to the expression of the

housekeeping gene Gapdh.

Immunoblot Analysis

For immunoblot analysis, cells were lysed with radio-immunoprecipitation

buffer supplemented with protease inhibitor ‘‘cocktail’’ (Sigma-Aldrich). To-

tal lysates of the different T cell subsets (40 mg) were resolved by electro-

phoresis through 4%–12% Bis-Tris Nupage gels (Invitrogen) and were

transferred onto PVDF membranes (Millipore). The following primary anti-

bodies were used: anti-ROR-a (Abcam), anti-MTNR1A (Santa Cruz), anti-to-

tal and phospho-Erk1/2 (Cell Signaling), anti-total C/EBP a (Cell Signaling),

anti-phospho C/EBPa (Cell Signaling), anti-Nfil3 (Santa Cruz), and anti-

GADPH (Abcam). Blots were developed with SuperSignal West Femto

Maximum Sensitivity Substrate as suggested by the manufacturer (Pierce).

Statistical Analysis

A Poisson regression model was used to assess the impact of season

6-SM levels and the number of clinical relapses, generating an incidence

rate ratio (IRR) and corresponding 95% confidence intervals (CI). A

repeated-measures mixed model was used to assess the effect of treat-

ment and its interaction with time in EAE experiments. A linear regression

model was used to analyze the relationship between serum melatonin levels

and IL-17 or IL-10 gene expression. Differences between two or more con-

ditions were analyzed with Student’s t test, Mann-Whitney test, one-way

ANOVA, or Wilcoxon rank-sum test when appropriate. p values <0.05

were considered significant. Unless otherwise specified, all data are pre-

sented as mean ± SEM. All statistical analyses were performed using Stata

v12 (Statacorp).
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narå, B.T., Hovdal, H., Lilleås, F., Midgard, R., Pedersen, T., et al. (2012).

Vitamin D and disease activity in multiple sclerosis before and during inter-

feron-b treatment. Neurology 79, 267–273.

Macchi, M.M., and Bruce, J.N. (2004). Human pineal physiology and functional

significance of melatonin. Front. Neuroendocrinol. 25, 177–195.

McGeachy, M.J., Bak-Jensen, K.S., Chen, Y., Tato, C.M., Blumenschein, W.,

McClanahan, T., and Cua, D.J. (2007). TGF-b and IL-6 drive the production of

IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat.

Immunol. 8, 1390–1397.

McMullan, C.J., Schernhammer, E.S., Rimm, E.B., Hu, F.B., and Forman, J.P.

(2013). Melatonin secretion and the incidence of type 2 diabetes. JAMA 309,

1388–1396.

Miossec, P., Korn, T., and Kuchroo, V.K. (2009). Interleukin-17 and type 17

helper T cells. N. Engl. J. Med. 361, 888–898.

Morera, A.L., and Abreu, P. (2007). Daytime/night-time and summer/winter

melatonin and malondialdehyde rhythms: an inverse relationship. J. Pineal

Res. 43, 313–314.
C
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